说明
最大公因数使用辗转相除法来求,最小公倍数则由这个公式来求:
GCD * LCM = 两数乘积
解法
最大公因数可以使用递迴与非递迴求解,因式分解基本上就是使用小于输入数的数值当作除数,去除以输入数值,如果可以整除就视为因数,要比较快的解法就是求出小于该数的所有质数,并试试看是不是可以整除,求质数的问题是另一个课题,请参考 Eratosthenes 筛选求质数。
实作(最大公因数、最小公倍数)
#include <stdio.h>
#include <stdlib.h>
int main(void) {
int m, n, r;
int s;
printf("输入两数:");
scanf("%d %d", &m, &n);
s = m * n;
while(n != 0) {
r = m % n;
m = n;
n = r;
}
printf("GCD:%d\n", m);
printf("LCM:%d\n", s/m);
return 0;
}
public class GcdLcm {
public static int gcdOf(int m, int n) {
int r;
while(n != 0) {
r = m % n;
m = n;
n = r;
}
return m;
}
public static int lcmOf(int m, int n) {
return m * n / gcdOf(m, n);
}
public static void main(String[] args) {
System.out.println("GCD of (10, 4) = " +
GcdLcm.gcdOf(10, 4));
System.out.println("LCM of (10, 4) = " +
GcdLcm.lcmOf(10, 4));
}
}
实作(因式分解)
#include <stdio.h>
#include <stdlib.h>
int main(void) {
int i, n;
printf("请输入整数:");
scanf("%d", &n);
printf("%d = ", n);
for(i = 2; i * i <= n;) {
if(n % i == 0) {
printf("%d * ", i);
n /= i;
}
else
i++;
}
printf("%d\n", n);
return 0;
}
#include <stdio.h>
#include <stdlib.h>
#define N 1000
int prime(int*); // 求质数表
void factor(int*, int); // 求factor
int main(void) {
int ptable[N+1] = {0};
int count, i, temp;
count = prime(ptable);
printf("请输入一数:");
scanf("%d", &temp);
factor(ptable, temp);
printf("\n");
return 0;
}
int prime(int* pNum) {
int i, j;
int prime[N+1];
for(i = 2; i <= N; i++)
prime[i] = 1;
for(i = 2; i*i <= N; i++) {
if(prime[i] == 1) {
for(j = 2*i; j <= N; j++) {
if(j % i == 0)
prime[j] = 0;
}
}
}
for(i = 2, j = 0; i < N; i++) {
if(prime[i] == 1)
pNum[j++] = i;
}
return j;
}
void factor(int* table, int num) {
int i;
for(i = 0; table[i] * table[i] <= num;) {
if(num % table[i] == 0) {
printf("%d * ", table[i]);
num /= table[i];
}
else
i++;
}
printf("%d\n", num);
}
import java.util.ArrayList;
public class Factor {
public static int[] factor(int num) {
int[] pNum = Prime.findPrimes(num);
ArrayList list = new ArrayList();
for(int i = 0; pNum[i] * pNum[i] <= num;) {
if(num % pNum[i] == 0) {
list.add(new Integer(pNum[i]));
num /= pNum[i];
}
else
i++;
}
list.add(new Integer(num));
int[] f = new int[list.size()];
Object[] objs = list.toArray();
for(int i = 0; i < f.length; i++) {
f[i] = ((Integer) objs[i]).intValue();
}
return f;
}
public static void main(String[] args) {
int[] f = Factor.factor(100);
for(int i = 0; i < f.length; i++) {
System.out.print(f[i] + " ");
}
System.out.println();
}
}